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Complex time path for tunnelling at intermediate energy 

E M Ilgenfritz and H Perlt 
Fachbereich Physik, Universilit Leipzig, 0-7010 Leipzig, Federal Republic of Germany 

AbstracL M investigate tunnelling through a potential barrier in quantum mechanics 
extending Feynman’s path integral U, mmplex time paths. Thii problem has gained new 
interest in the mnlut of baryon number violating prooesses in the standard electraveak 
model, where the vansitions between topological ~cctors must be described at high 
energies and temperatures. In this paper we reduce the number of degrees of fredom 
U, one in order to test our method. It b found that a path in the mmplex time plane 
consisting of purely real or imaginaly steps minimizes the real and imaginary pans of 
the action simultaneously, Jumps from real to imaginary time incremenls are situated 
at the turning points of the dassical problem. Possible extensions U, field theory are 
diSCUSSSd. 

1. Introduction 

lmnelling processes belong to the oldest miracles in quantum physics. Recently tun- 
nelling has gained new interest which stems from the calculation of high energetic 
scattering processes in the framework of the standard electroweak model [l, 21. It has 
smn become clear that the naive estimates suffer from an inability to reconcile dif- 
ferent viewpoints about the mechanism of transition between two distinct topological 
sectors, at energies comparable to the so-called sphaleron energy. This concerns the 
simultaneous understanding of the process from the Euclidean (instanton) and the 
Minkowskian (sphaleron) perspectives, respectively. It is obvious that the zero-energy 
0(4)-sy”etric instanton solution is not a suitable background for high-energy scat- 
tering involving baryon number violation. Various improvements have been suggested 
but none of them has proved to solve the problem satisfactorily. One interesting 
proposal has been given by Khlebnikov et a1 [3]. They discuss the concept of using 
(pans of) periodic instanton solutions in instanton-induced processes. Their conclu- 
sion was pessimistic with respect to the expected cross section of baryon-violating 
processes. Nevertheless we thiik that their idea of a path-integral description com- 
bining Minkowski and Euclidean p in t s  of view is worth discussing in more detail. 

In this paper we illustrate a numerical procedure by applying it to a quantum 
mechanical toy model for barrier penetration, whose exact solution is known and 
can be confronted with the result of our mmplex time-path method. There is one 
principal difference between the toy and the real problem: h the case of one degree 
of freedom there are exactly calculable turning points (of the classical trajectory) 
while there are none in field theory. This circumstance is extremely helpful in the 
toy case, but could cause certain difficulties when one wants to apply our method to 
field-theoretic models. We will discuss this aspect at the end of our paper. 
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2. The complex time-path method from Feynman's path integral 

The investigation of tunnelling processes in the framework of path integrals and the 
concept of complex time paths was discussed in the seventies, e.g. by McLaughlin [4] 
and Miller 151, and later by Carlitz and Nicole [6]. In the present paper it is the 
principle of extrema1 (real and imaginaly) parts of the reduced action, postulated in 
the context of the path integral, that we would like to put into the first position. This 
principle could Selve both as a motivation and as a constructive tool for practising 
complex time-path methods in general. 

We consider a simple model of a particle with energy E in the field of a potential 
V, described by the Lagrangian 

E M Ilgenfnin and H Perlt 

= $711g2 - v(Q) . (1) 

In quantum mechanics the transition amplitude from a state qin, ti, to a state qfi,  tfi 
is given by the expression 

Expanding around the classical path qc,( t ) ,  

q ( t )  = n d t )  + Y(t) 

one gets the following perturbative representation for W 

W(qfi., tfi; qin, ti.) = exp hscl (qf i7  tfi; qin, ti.) W (0, tti; 0 ,  ti,) (3) 
( i  ) 

where up to the second order in y ( t )  (i.e. to one-loop accuracy) r?l is approximated 
bY 

In leading order only the first exponential exp[(i/h)Sc,] is taken into account. For a 
particle with fixed energy E the Fourier aansform of W is the appropriate quantity 
to consider (we set tin = 0 and tfi = T without loss of generality): 

Inserting the WKB approximation for W in the Fourier transform and defining the 
so-called reduced action, 

~ = E T + s , ,  (6) 

the following expression is obtained: 
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where f has an E-dependence. which results from the stationary phase condition 

a -r = o 3 T 3 F = E?+ sc,(qfi,qin; i.). aT 

The integer n is the number of turning paints along the classical path, and b is 
defined for a onedimensional problem 

Equation (7) describes classically allowed trajectories. Things become more mm- 
plicated when the energy of a particle is less than the height of a barrier placed on 
its classical path. Then a classical solution does not exist everywhere and (7) cannot 
be applied in a straightforward manner. However, analytic continuation of the time 
variable into the complex plane can save the situation [7,8]. McLaughlin [4] has 
arrived at the following generalization: 

where T,, is the so called criticalpoint given by the relation 

Miller [SI started from a classical trajectory in a given potential, e.g. 

r(t) = -sinh- '[(a/E - l)-* cosh(vt)] (11) 

for a particle with energy E (and velocity U in the asymptotical past) under reflection 
from the Eckart potential wall ((32), to be discussed- below). He identified a set of 
branching pints  in the complex time plane at 

which were then used to classify possible trajectories approaching z - kc0 at infinite 
time, after some amount of imaginary time 'spent' under the barrier. Miller [5] was 
interested mainly in the leading WKB approximation of the amplitudes, to be summed 
over topologically equivalent trajectories. 

In this paper we follow another strategy to obtain the solution: for a given 
energy E we look for the trajectory minimizing r, aiming to obtain simultaneously a 
series of real coordinates qi and a series of complex times ti. Also, we will extend 
a well known method to calculate the determinant to this unconventional space and 
time trajectory. In figure 1 the situation for a single barrier penetration is shown. 
Regions I and 111 contain the classically allowed paths whereas region I1 is forbidden 
classically. A particle coming from region I to end up in region I11 will behave 
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almost classically as long as its total energy is larger than the local potential. As 
a quantum particle it will ‘spend’ complex time traversing those regions where the 
potential exceeds the energy (between the would-be turning points). During that 
‘time’ it can be treated as a bounded particle in region I1 in an inverted potential 
V ( q )  -+ - V ( q ) .  After the barrier is left behind, the particle moves again almost 
classically in real time. The following boundary conditions have to be imposed: 

region 1 q ( 0 )  = q,, q( t : )  = q: (+ p(t;) = 0 )  

E M Ilgenfriin and H Perlt 

region 11: G(t;) = @: = q; c(t;) = 6; = q; (13) 
region 111: q ( T )  = qfi q(t;) = q; (+ p ( t : )  = 0 ) .  

The tilde marks the classical forbidden configuration. 

Figure t Potential banier V ( q )  together 
energy E of a quantum particle. 

with 

What does it mean to minimize r when time is allowed to become complex? It 
is simply both real and imaginary parts of r which have to be minimized simultane- 
ously, while the particle with energy E has to move in space from qin to qfi. The 
corresponding reduced action to be minimized is 

r(qfi,qi,;w= E T +  S(qfi,qi,;T) (14) 

where T is the (supposed) time the particle needs to go from qi, to qfi. Discretiz- 
ing the time (At ,  = ( t i + ,  - ti)) and setting q, = q ( t i )  we can write the action 
s(qfi, 4,” ; T )  as 

(We set m = 1 throughout the paper.) In order to allow the system to choose its 
time path freely we write each time interval explicitly as a complex number: 

A t i = a i + i A i .  (16) 
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This results in the following decomposition: 

r = Re( r) + i I m ( r )  = rR + i r ,  

Note that q1 = qin, qN = qfi, AN = 6, = 0. 

to calculate the gradients 
Minimizing rR and r, simultaneously with respect to p i ,  6, and A; requires Us 

and to Iwk for the minimum of the scalar quantitj 

Our requirement that both the real and imaginary parts of the exponent r should 
be extremized separately, is due to the fact that the real pan governs the phase of 
the amplitude (stemming from the Minkowskian domain of the path) and has to be 
stationary to avoid rapid cancellations, whereas the imaginary part determines directly 
the modulus (describing the Euclidean part of the path). 

Now we turn to the problem of the calculation of the determinant. Ij as given 
in (8) is obtained from the steepest descent paths and the corresponding Gaussian 
saddle-point integration over T. This suggesn the inclusion of the determinant in the 
extremizing procedure with respect to (6; and A i ) .  Instead we adopt the approxi- 
mation that the E-dependence of the determinant is specified through the complex 
time path found in (18). We write the first of the equations (8) in the form 

b = W(-S) 
making use of the equality 

There is a method to compute $ to one-loop accuracy presented in [9] which is 
suitable in this case, too. Defining 

'7= (:I 
YN 
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we can rewrite W as 

E M IIgenfna and H Per11 

1 
2chi 

o=- 

Nt1/2  * = lim (-) 1 d N q  e x p ( - q T q )  
N-m z.nih.5 

. . .  . . . . . .  
. . .  0 -1 2 -1 0 ... 

k* : ... 0 -1 1 + i  -i 0 ... 
... 0 -i 2; -j 0 ... 

. .  . .  . . . .  . .  . . . .  
... 0 -i -i 0 ... 

k*: ... 0 -i l + i  -1 0 . . .  
... 0 -1 2 -1 0 ... 

. . .  . . .  . . . .  . . . . . .  
... 0 -1 2 -1 0 

... 0 -1 2 -1 

ic t- 2h 

k* and k** label the boundaries between the Minkowski (I, 111) and Euclidean (11) 
regions. 

. . . .  ... 

... o + ( I - ~ ) Q -  o ... 
... 0 - i c p + l  0 .(. 

... ... 
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Now we introduce the notation p N  for the determinant, 

(26) N p ,  = (2ihe) det  D .  

By expanding the minors of aj (the part of U mntaining the kirst j columns and 
rows) one recognizes the following recursion formuiae for p ,  = rj  + L ij. 

Region I: 

2 rptl = (2 - c2ck+,)rk - rk - ,  

r,, = 1 

r1 = 2 - E  c, 
(27  

tk+l  = ( 2  - 2 C l i + , ) t ;  - t t - ,  1, = to = 0 

Boundary VI: 

2 Tk+ = (1 - E2ck+)rk.-1 - - (1 + e  ch+)tb.-, 
(28) 

fk. = (1 - c 2 C & + ) t k + - l  - ‘ k l - 2  f (1 $. E 2 C k * ) P k * - l  

Region 11: 

rk+1 = - (2 + ~ Z C k + l )  l k  f rk-1 % + 1 =  (2-f-&+l)% C t k - 1  (29) 

Boundary II/III 

rgr. = ( I  - ~ ~ c ~ . . ) ~ k . . _ ~ $ . r ~ . . _ ~ - ( 1  + c  2 Cb- . ) tk .+-1  

2 (30) 

(3 1) 

t,.. = (1 - e c k + + ) f k * . - l  t tk,.-z + ( I  + 2ck*+)rk*.--1 

Kegic!! I!!: 

r b + l  = ( 2  - ezck+l)rk - rb- ,  f k t l  = ( 2  - ~ ~ ~ k + ~ ) t ~  - t k - , .  

These recursion relations are convenient to compute the one-loop determinant, 
especially in a numerical treatment where the limit N - w cannot be carried Out 
practically. They give a complex result a s  i t  is expected in a tunnelling process. 

The second factor in the approximation for b - ( i 3 2 T / ~ E Z ) 4 a n  be computed 
in a straightforward manner once the E-dependence is obtained via (18). 

3. An example 

We illustrate our method for the Eckart potential 

The transmission coefficient of this potential is analytically known from a direct 
solution of the Schrodinger equation [lo]. Miller [5] has discussed this problem 
within his complex path method up to the leading W K B  approximation. Here we 
want to find the complex time path vaflationally. As a minimizing algorithm we 
use a conjugate-gradient method. ?here€Ore, we need a starting configuration that 
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I 

0 -  

4 -  

2 -  

'1 

0 -  

-2  - 

-4  - 

-0.5 I 
o 2 4 8 , a  10 12 0 2 4 0 8 10 12 14 

R 4 t )  

F@re 2 Spacc trajectory q for E = 0.5. l i m e  t 
is prtly MI. panly imaginary (in the Same units). 

Figure 3. Initial (broken curve) and final (full 
curve) time path in the complex plane, mrrespand- 
ing to E = 0.5 (figure 2). 

should not be too far away from the real extremum. As input we use the separate 
solutions of the classical equations of motion in the three regions (in real or imaginary 
time, respectively) glued together at the boundaries in accordance with the boundary 
conditions (13). These solutions have been constructed with a Runge-Kutta method 
with a 'time' step size of h = 0.02. But additionally we smeared out the edges of the 
complex time path. For the following four example runs we took the parameters: 

set 1: a = 5  E = 4 . 5  q I" = - 5  qn = . 7  No,, = 0 (33) 
set 2 a = 5  E = 0.5 qin = -5 qri = 7 No,, = 0 (34) 

set 3 a = 5  E = 0 . 1  q I" = - 5  q G = 7  No,, = 0 (35) 
set 4: a = 5  E = 4.5 qi, = -5 qri = 7 No,, = 1 (36) 

where No,, denotes the number of oscillations between the turning points in region 11. 
In figure 2 the space trajectory q is shown versus time for set 2 The regions of real 
and imaginary time increments, respectively, are indicated. No visible difference 
could be recognized between the trajectories before and after conjugate gradient 
minimization, i.e. the 'classical' solution is very near to the final configuration. Perhaps 
also interesting are the initial and final complex time paths, given in figure 3. One can 
see that the system prefers a sharp edge from the real to the purely imaginary part 
of the path and vice versa. It should be noticed that the total imaginary time interval 
amounts to ?i, which corresponds precisely to the imaginary spacing of branching 
points in (12). Figure 4 shows a space trajectory versus time for the set 4 (energy 
E = 4.5) which oscillates back and forth before leaving the barrier as a right mover. 
The energy had been chosen such that the velocity t~ was exactly three times as large as 
in set 2. Therefore, due to the additional oscillation below the barrier, the imaginaly 
time step is again ?r and the time path looks practically as in figure 3. Quantitatively 
we have to report the following reduced action values and variation functional5 before 
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and after mnjugate gradient minimization, together with the fluctuation determinants 
for the respective energies: 

Set 1 r p I  = 0.5132 r p  = 0.5097 

r y l  = 771.8 r p  = 769.3 

F i n i t a l  - - 0.765 pa' = 0.784 x 

p N  = 1.01 4-iO.044 = l .01e'0.04 

Set 2 rpital = 6.797 r p l =  6.793 

rip = 359 4 rpl = 354.9 

F i n i t a l  - - 0.949 p"" = 0.794 x 

p N  = 48.01 + i0.145 = 48.03e'0.003 
(37) 

Set 3 r p t a l  = 8.529 r p l  = 8.529 

rpal = 277.4 rpl = 277.4 

F i n i t a l  - - 0.1 x lo-* Ffinal = 0.654 x 

p ,  = 283.4 + i4.137 = 300.5ei0.0'5 

1.531 Set 4 r i n i t a l  I - -1.562 p n a l  = I 

r y l  = 811.7 

Fi"it"1 - - 1.91 x 10' 

r p l  = 784.7 

pna' = 0.717 x 

p, = 0.0337 + i0.943 = 0.9449e''.537. 

Figure 4 Space lrajecloly q for E = 4.5, 
performing o n e  arcillalion under the banier. 
Time i is p n l y  real, panly imaginaly (in the 
Same units). 
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4. Discussion 

The quantum mechanical toy model investigated shows a behaviour with surprisingly 
clean separation between the three regions, with a sharp-edged complex time path. 
This result was not obvious from the beginning, at least to us. 'RI our knowledge a 
variational method to obtain explicitly space trajectory and time path has not appeared 
before in the literature. Moreover, we applied the well known method for calculating 
the determinant of fluctuations on top of the leading trajectory (in each topological 
sector) to the case in hand, where it handles each trajectory uniformly over its real 
and imaginary time sections. The justification to use the recursion relations in their 
form (27)-(31) is provided hy the 'rectangular' transition from the Minkowski to the 
Euclidean time regime. 

Our choice of for the potential V (  q )  was determined by the possibility to compare 
our result with the exact solution known for a long time [lo]. The transmission 
coefficient is given hy 

E M ngenfriu and H Per11 

sinh2 n k  
D ( E ) e x a c t  = sinh 'nk + c o s h 2 ( i n m  

with k defined by IC = a. In our approach the transmission coefficient D( E )  has 
the form 

DN.., = D N S n c  Dhsmc (39) 
with DNoBc defined by 

The example runs for the sets 1, 2 and 3 compared to the exact result as shown in 
table 1. 

Tabk 1. 

" ,U, 
-","I 

n, 2-1 
Y , Y , e x . c ,  

U 
Y 

0.1 4.4 x 10-8 3.5 10-9 
0.5 1.6 x 1.9 x 10-6 
4.5 0.316 0.316 

We note that we have done the path integral and the integration over T within 
the Gaussian saddle-point approximation. A non-perturhative path integration, which 
is possible in the Euclidean region, could improve our result. So far, the numerical 
value for E = 4.5 has been fitted to the exact result in order to compensate for these 
approximations. Then our results show a deviation from D(  E),,,, at smaller energy 
E.  Nevertheless, the agreement is not bad. For set 4 we have the following formula 
for the transmission coefficient: 
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where we have set p N (  E )  = U,.., ei 4, and used the (numerically found) approxima- 
tive equality 

aZr(0) a2rO) a2r ---=- 
aE2 aEZ a E 2 '  

From the numbers in (28) we find for phase difference in (29) 
A h  - ,A(') ~ ,A(') - 1 A 0 7  Y y  - " ~ yN - L . 1 . 7 ,  

which is rather close to the expected value A b  = ~ / 2  [9]. This demonstrates that 
our method for calculation of the one-loop determinant also reproduces the relative 
phases. 

McLaugblin [4] has also used complex time variables and got similar results espe- 
cially for the resulting reduced action. Carlitz and Nicole [6] calculated the transition 
probabiiity for various quantum mechanicai exampies including paraboiic potentiai 
barriers. They considered all possible saddle points and the corresponding steepest 
descent paths in the complex time plane. But explicit trajectories were not available 
within their approach. 

It was our intention to demonstrate the complex time path as it results from the 
variational principle (18). The moral fits perfectly into the discussion concerning the 
periodic instanton approach i3j . Tnere, the dciaiied form of the compiex time path 
is crucial for the method. However, it is known that results of quantum mechanics 
cannot be straightfonuardly taken over into quantum field theory. The main obstacle 
lies in the fact that a classical turning point can hardly be defined for a system 
with many degrees of freedom. It remains to be seen how the variational principle 
(18) copes with a problem with a few degrees of freedom. It is merely the use of 
JUIYUU113 U, "IC: Cyu'lnurr> U, llLUL,",, I,,, IVll l l lrUWJhL U1 c,"L.II"cid,, L ,111 c,, W,lLc.ll LlcCiuD 

the existence of the turning points as prerequisite. 
A possible way out in order to keep this heuristic tool could he the truncation of 

the many degrees of freedom to effectively a single one (reaction coordinate) and a 
description of the system in terms of (quantum) effective mass and potential. Tiken 
as the final answer, this would possibly imply an uncontrollable loss of physical reality. 

ago. They were the first to address vacuum tunnelling in a quantum field theory 
in Minkowski space. In order to do this they interpreted the Euclidean time of the 
instanton as a function A( 1 )  of a typically real, occasionally imaginary time parameter. 
Within the standard ansatz for the pseudopanicle solution and the integration over 3- 
space they obtained an effective theory with one degree of freedom (with completely 

for the combined Higgs-Yang-Mills system the general idea could be of interest in 
combination with our toy model discussed above. A partly real, partly imaginary 
time aajectory obtained through this truncation could, at least, serve as input for 
the numerical variational problem. It should be noted, however, that it is difficult 
to extend the class of ansQtze taken as input. One should at least go beyond the 
0(4)-symmetry in order to be much more realistic than using other approaches. 

..̂ I..*:̂ -" ^F .I.̂  ""..".:̂ ..- ^C ...,..:-.. I:.. X":"L -..- 1.: ^- =..-,:A--- .:...-, ...I.:..l. ..̂ ^A  ̂

A firrt e ton ;n thk divertinn -P tn lron hxr  Ritir 2nd r h n n n  1111 mnio thin n Ae,mdo <. ."". ".-y U. L..Y .."" -..-.. .,, -..". *.." ...-.- ".".. 

dassica! mzss 2nd potentia! at this !eve!)l Although their ansatz i3 not app!icah!~. 

Acknowledgments 

We would like to thank Jochen Kripfganz for helpful discussions. We are grateful to 
the referee for drawing our attention to reference [SI. 



5740 

References 

E M Ilgenfriu and H Perlt 

Ringwald A 1990 NucL Phys. B 530 1 
Espinoza 0 1990 NucL Phys. B 334 310 
Khlebnikov S Yu, Rubakm V A and linyakov P G 1991 NucL Phys. B 367 334 
McLaughlin D W 1972 1 Maih Phys. U 1099 
Miller W H 1974 Advmcer m Chm'cd  Physics MI 25 ed 1 Pdgogine and S A Rice p 136 
Caditz R D and Niwle D A 1985 Ann Phys. 164 411 
Eaiibitt D i963 i &>ria B y 2  4 36 
Feldmann J 1963 Tmm Am M d a  Sm. 108 251 
Schulman L S 1981 TFchniqUu cmd AppIicatim of porh Inregrotion (New York Wley) 
Landau L D, Lifschitz E M 1965 Lchrbuch dm lheonruchm Physik MI 111 (Berlin: Akademie 

Bitar K M, Chang S J 19l8 phys Rev. D 17 486 
VeW) 


